Bristol OpenEnterprise Reference Guide
Allen-Bradley Configuration

Remote Automation Solutions
Website: www.EmersonProcess.com/Remote
Contents

1 Allen-Bradley Configuration Tool ... 8
 1.1 Prerequisites ... 8
 1.2 Running the Allen-Bradley Config Tool ... 8
 1.2.1.1.1 Command-line options ... 8

2 The Interface .. 9
 2.1 Tree Pane .. 9
 2.1.1 Driver Node .. 9
 2.1.2 Driver Context Menu ... 10
 2.1.2.1 Add Network ... 10
 2.1.2.2 Delete Driver ... 10
 2.1.2.3 Driver Properties .. 10
 2.1.3 Network Node .. 10
 2.1.4 Network Context Menu .. 10
 2.1.4.1 Add Device .. 10
 2.1.4.2 Delete Network .. 11
 2.1.4.3 Network Properties ... 11
 2.1.5 Device Node .. 11
 2.1.6 Device Context Menu .. 11
 2.1.6.1 Add Signal .. 11
 2.1.6.2 Add Poll List .. 11
 2.1.6.3 Delete Device .. 11
 2.1.6.4 Device Properties .. 11
 2.1.7 Signal Nodes .. 12
 2.2 List Pane .. 12

3 Adding Items .. 13
 3.1 Networks .. 13
 3.1.1 Network Name .. 13
 3.1.2 Driver .. 13
 3.1.3 Network Description ... 13
 3.1.4 Disable Network .. 14
 3.1.5 Statics Frequency .. 14
 3.1.6 RSLogix Driver Name .. 14
 3.1.7 AB Network ID ... 14
 3.2 Devices .. 14
 3.2.1 Device Name .. 14
 3.2.2 Network ... 14
 3.2.3 Device Description ... 15
 3.2.4 Address ... 15
 3.2.5 Disable Device .. 15
 3.2.6 Device Check Period .. 15
3.3.7 Redundant.. 15
3.3.8 Backup Address ... 15
3.3.9 Main Indicator .. 15
3.3.10 Schedule Interval .. 15
3.3.11 Schedule ID ... 15
3.3.12 Heartbeat Address ... 15
3.3.13 Heartbeat Rate ... 15
3.3.1 Signals .. 15
3.3.1.1 Add Digital Signal General Dialog ... 16
3.3.1.2 Description .. 16
3.3.1.3 On Units Text ... 17
3.3.1.4 Off Units Text ... 17
3.3.1.5 Device ... 17
3.3.1.6 File Address .. 17
3.3.1.7 Display ... 17
3.3.1.8 Plant Area ... 17
3.3.1.9 Access Area .. 17
3.3.1.10 Callout Area .. 17
3.3.2 Add Real Signal General Dialog .. 18
3.3.2.1 Name ... 18
3.3.2.2 Description .. 18
3.3.2.3 Device ... 18
3.3.2.4 File Address .. 18
3.3.2.5 Display ... 19
3.3.2.6 Units Text ... 19
3.3.2.7 Low Entry Limit ... 19
3.3.2.8 High Entry Limit .. 19
3.3.2.9 Span ... 19
3.3.2.10 Zero .. 19
3.3.2.11 Plant Area ... 19
3.3.2.12 Access Area .. 19
3.3.2.13 Callout Area .. 19
3.3.3 Add Integer Signal General Dialog .. 20
3.3.3.1 Name ... 20
3.3.3.2 Description .. 20
3.3.3.3 Units Text ... 20
3.3.3.4 Device ... 20
3.3.3.5 File Address .. 21
3.3.3.6 Display ... 21
3.3.3.7 Low Entry Limit ... 21
3.3.3.8 High Entry Limit .. 21
3.3.3.9 Plant Area ... 21
3.3.3.10 Access Area .. 21
3.3.3.11 Callout Area .. 21
3.3.4 Add Complex Signal General Dialog .. 21
3.3.4.1 Name ... 22
3.3.4.2 Description .. 22
3.3.4.3 Device .. 22
3.3.4.4 File Address .. 22
 3.3.4.4.1 Digital .. 22
 3.3.4.4.2 Real .. 23
 3.3.4.4.3 Integer .. 23
 3.3.4.4.4 Complex .. 23
3.3.4.5 Display .. 23
3.3.4.6 Plant Area .. 23
3.3.4.7 Access Area ... 23
3.3.4.8 Callout Area ... 23

3.4 Poll Lists .. 23
 3.4.1 Name .. 24
 3.4.2 Description .. 24
 3.4.3 File .. 24
 3.4.4 Start Address .. 24
 3.4.5 End Address .. 24
 3.4.6 Auto End Address .. 24
 3.4.7 Access Area .. 24
 3.4.8 Schedule ID ... 25
 3.4.9 Disable Poll List .. 25

3.5 Alarm Conditions ... 25
 3.5.1 Digital Alarm Conditions Dialog.. 25
 3.5.1.1 Alarm Condition Tick List ... 26
 3.5.1.2 Set Button ... 26
 3.5.1.3 Condition Details ... 26
 3.5.2 Real Alarm Conditions Dialog.. 26
 3.5.2.1 Alarm Condition Tick List ... 27
 3.5.2.2 Set Button ... 27
 3.5.2.3 Condition Details ... 27
 3.5.3 Integer Alarm Conditions Dialog.. 27
 3.5.3.1 Alarm Condition Tick List ... 28
 3.5.3.2 Set Button ... 28
 3.5.3.3 Condition Details ... 28

4 Modifying Items .. 29
 4.1 Driver General Dialog .. 29
 4.1.1 Driver Name .. 29
 4.1.2 Type ... 30
 4.1.3 Driver Description .. 30
 4.1.4 Driver Address .. 30
 4.1.5 Driver Disable .. 30
 4.1.6 Retry Period .. 30
 4.1.7 Signal Name Separator ... 30
 4.1.8 Default PLC Timeout ... 30
4.1.9 PLC Fail Count ... 30
4.1.10 Unmapped Datum Delay .. 30
4.1.11 Maximum Data Items ... 30
4.2 Network General Dialog ... 30
 4.2.1 Network Name ... 31
 4.2.2 Driver ... 31
 4.2.3 Network Description ... 31
 4.2.4 Disable Network ... 31
 4.2.5 Statics Frequency ... 31
 4.2.6 RSLinx Driver Name .. 31
 4.2.7 AB Network ID .. 31
4.3 Device General Dialog ... 31
 4.3.1 Device Name ... 32
 4.3.2 Network ... 32
 4.3.3 Device Description ... 32
 4.3.4 Address ... 32
 4.3.5 Redundant ... 32
 4.3.6 Disable Device .. 32
 4.3.7 Device Check Period .. 33
 4.3.8 Schedule ID ... 33
 4.3.9 Heartbeat Address .. 33
 4.3.10 Heartbeat Rate .. 33
4.4 Signal Dialogs ... 33
 4.4.1 Digital Signal General Dialog 33
 4.4.1.1 Name ... 34
 4.4.1.2 Description .. 34
 4.4.1.3 On Units Text ... 34
 4.4.1.4 Off Units Text ... 34
 4.4.1.5 Device ... 34
 4.4.1.6 File Address ... 34
 4.4.1.6.1 Digital .. 34
 4.4.1.6.2 Real ... 35
 4.4.1.6.3 Integer .. 35
 4.4.1.6.4 Complex .. 35
 4.4.1.7 Display ... 35
 4.4.1.8 Plant Area .. 35
 4.4.1.9 Access Area ... 35
 4.4.1.10 Callout Area .. 35
 4.4.2 Real Signal General Dialog .. 35
 4.4.2.1 Name ... 36
 4.4.2.2 Description .. 36
 4.4.2.3 Device ... 36
 4.4.2.4 Units Text .. 36
 4.4.2.5 Display ... 36
 4.4.2.6 Low Entry Limit .. 37
 4.4.2.7 High Entry Limit .. 37

Remote Automation Solutions
Website: www.EmersonProcess.com/Remote
4.4.2.8 Span ... 37
4.4.2.9 Zero ... 37
4.4.2.10 Plant Area ... 37
4.4.2.11 Access Area .. 37
4.4.2.12 Callout Area ... 37

4.4.3 Integer Signal General Dialog 37
4.4.3.1 Name ... 38
4.4.3.2 Description ... 38
4.4.3.3 Device ... 38
4.4.3.4 Units Text ... 38
4.4.3.5 Display ... 38
4.4.3.6 Low Entry Limit .. 38
4.4.3.7 High Entry Limit ... 39
4.4.3.8 Span ... 39
4.4.3.9 Zero ... 39
4.4.3.10 Plant Area .. 39
4.4.3.11 Access Area .. 39
4.4.3.12 Callout Area .. 39

4.4.4 Complex Signal General Dialog 39
4.4.4.1 Name ... 40
4.4.4.2 Description ... 40
4.4.4.3 Device ... 40
4.4.4.4 File Address ... 40
4.4.4.4.1 Digital .. 40
4.4.4.4.2 Real .. 40
4.4.4.4.3 Integer .. 41
4.4.4.4.4 Complex ... 41
4.4.4.5 Display ... 41
4.4.4.6 Plant Area ... 41
4.4.4.7 Access Area .. 41
4.4.4.8 Callout Area .. 41

4.5 Signal Alarm Conditions ... 41
4.5.1 Digital Alarm Conditions ... 41
4.5.1.1 Alarm Condition Tick List 42
4.5.1.2 Set Button ... 42
4.5.1.3 Condition Details ... 42
4.5.2 Real Alarm Conditions ... 42
4.5.2.1 Alarm Condition Tick List 43
4.5.2.2 Set Button ... 43
4.5.2.3 Condition Details ... 43
4.5.3 Integer Alarm Conditions Dialog 43
4.5.3.1 Alarm Condition Tick List 44
4.5.3.2 Set Button ... 44
4.5.3.3 Condition Details ... 44

4.6 Poll List .. 44
4.6.1 Name .. 45
4.6.2 Description.. 45
4.6.3 Device... 45
4.6.4 File .. 45
4.6.5 Start Address.. 45
4.6.6 End Address ... 45
4.6.7 Auto End Address... 46
4.6.8 Access Area.. 46
4.6.9 Schedule ID .. 46
4.6.10 Disable Poll List.. 46

5 Deleting Objects General Rules ... 47

6 PLC Addressing... 48
 6.1.1.1.1 ABNetwork.. 48
 6.1.1.1.2 ABDevice .. 48
 6.1.1.1.3 Signals ... 49
 6.1.1.1.4 ABDigital ... 49
 6.1.1.1.5 ABIntegerAnalog... 49
 6.1.1.1.6 ABRealAnalog ... 50
 6.1.1.1.7 ABPollList ... 50

7 Index ... 51
1 Allen-Bradley Configuration Tool

The Allen-Bradley Configuration Tool provides the OpenEnterprise System Administrator with an easy method of configuring the Allen-Bradley Remote Device Interface (RDI) within the OpenEnterprise database.

The tool enables the user to add, update or delete Allen-Bradley RDI objects, such as Networks, Devices, Poll Lists, Signals and Alarm conditions. The Allen-Bradley Driver must be added using the Allen-Bradley option on the Device Drivers page of the Database Project Builder wizard, or by using the SQL Client, as described on the Prerequisites page.

1.1 Prerequisites

The Allen-Bradley configuration Tool (abconfig.exe) is installed as part of the OE Server installation, along with the Allen-Bradley RDI.

The file 'ABDef.sql' with default configuration is included with the installation. This file adds the initial Allen-Bradley driver to the ABDriver table, since the driver is not added by the Configuration tool.

The ABDef.sql file populates the dvi_region table with the necessary information for Allen-Bradley signals. In the absence of other SQL import files for prerequisite Allen-Bradley device database population, this file should be included in the initial OE Database build, but if it has not been, the procedure outlined below should be followed.

Access the SQL Client, select the Windows 'Start' button and then select Programs>>OpenEnterprise>>Database>>SQL.

At the SQL Client's command line interface type in the following short command:

SQL> include 'ABDef';

When started, the Allen-Bradley Configuration Tool logs on to the OE Database as an administrator user.

1.2 Running the Allen-Bradley Config Tool

To run the Allen-Bradley Configuration Tool either select it from the OpenEnterprise shortcuts in the Start menu, or run the executable from a command prompt, e.g.

C:> abconfig.exe

1.2.1.1 Command-line options

- /database <service_name> - Use the specified database instead of the default. If this option is not supplied, the configuration tool will attempt to connect to 'rtrdb1' on the local machine by default.

- /trace [<filename>] - Turn on SQL trace. This will write all database transactions to a file. If a filename is not specified, it will look in the OpenEnterprise settings file for a trace filename, and if this is not present it will use default filename 'C:\abconfig.sql'.
2 The Interface

The main window of the Allen-Bradley Config Tool has two panes. On the left is the Tree pane. It displays the objects configured for the Allen-Bradley Remote Device Interface as nodes of a Tree view. Individual objects belonging to the selected node are displayed in more detail in the List view pane on the right. Click the hotspots* on the image below for help on the main features of the interface.

2.1 Tree Pane

The Tree Pane displays Allen-Bradley Remote Device Interface (RDI) configuration as nodes in a tree hierarchy. The nodes consist of:

- Driver node
- Network nodes
- Device nodes
- Signal nodes

These nodes also give access to context menus, which enable configuration of the Allen-Bradley RDI.

2.1.1 Driver Node

Driver items correspond to entries in the abdriver table. A plus sign to the left of a node indicates the presence of objects under the parent object. Right clicking on the Driver node reveals the Driver node context menu, which makes configuration options available.
2.1.2 Driver Context Menu

The Driver Node context menu enables you to add a new Allen-Bradley Network, delete the Driver, or modify the Driver’s settings from it's Properties page.

2.1.2.1 Add Network

This option opens the Add Network General Dialog, which enables you to add a new Allen-Bradley Network object.

2.1.2.2 Delete Driver

Selecting this option will delete the Allen-Bradley Driver. Database integrity restraints will not allow the Driver deletion to succeed, unless all child Network, Device and Signal objects below it are deleted first. The attempted deletion will begin immediately this option is chosen.

2.1.2.3 Driver Properties

This option displays the Driver General Dialog, which allows you to modify settings for the Allen-Bradley driver.

2.1.3 Network Node

Network nodes correspond to entries in the abnetwork table. A plus sign to the left of a node indicates the presence of objects under the parent object. A right mouse click on the Network node reveals a context menu.

2.1.4 Network Context Menu

The Network Node context menu enables you to add a new Allen-Bradley Device, delete the Network, or modify the Network's settings from it's Properties page.

2.1.4.1 Add Device

This option opens the Add Device General Dialog, which enables you to add a new Allen-Bradley Device object.
2.1.4.2 Delete Network

Selecting this option will delete the Allen-Bradley Network. Database integrity restraints will not allow the Network deletion to succeed, unless all child Device and Signal objects below it are deleted first. The attempted deletion will begin immediately this option is chosen.

2.1.4.3 Network Properties

This option displays the Network General Dialog, which allows you to modify settings for the Allen-Bradley Network.

2.1.5 Device Node

A Device Node corresponds to a Device object in the abdevice table. If the Device node contains signals, a plus sign will exist to the left of it. Selecting the plus sign will display the Signal nodes. A right click on the Device node will display the Device Node context menu.

2.1.6 Device Context Menu

The Device Node context menu enables you to add a new Allen-Bradley Signal or Poll List, delete the Device, or modify the Device's settings from it's Properties page.

2.1.6.1 Add Signal

This option opens the Add Signal Dialog, which enables you to add a new Allen-Bradley Signal object.

2.1.6.2 Add Poll List

This option opens the Add Poll List Dialog, which enables you to add a new Allen-Bradley Signal Poll List.

2.1.6.3 Delete Device

Selecting this option will delete the Allen-Bradley Device. Database integrity restraints will not allow the Device deletion to succeed, unless all child Signal or Poll List objects below it are deleted first. The attempted deletion will begin immediately this option is chosen.

2.1.6.4 Device Properties

This option displays the Device General Dialog, which allows you to modify settings for the Allen-Bradley Network.
2.1.7 Signal Nodes

At the bottom of the tree are the signal type nodes and the poll list node. Depending on the types of signals present in the Device, the possible nodes are:

- Digital
- Integer
- Real
- Complex
- PollList

These nodes do not have a plus sign to indicate the presence of individual objects under them. Individual signals or poll lists are shown in the list pane when their associated node is selected in the tree. Alarm conditions are displayed on a property page of the associated signal. Signals of each type or a Poll List can be added by accessing the context menu on each of the different Nodes.

2.2 List Pane

The details of the items from the selected tables in the Tree Pane are displayed here. Context menus are available from the objects on display within this pane. The context menu available will depend on the type of object that has been selected. Below is a list of the possible nodes selected from the Tree pane, and the context menus that will be available by selecting the object or objects that appear in the List pane.

<table>
<thead>
<tr>
<th>Node Selected from Tree Pane</th>
<th>Context Menu Available in List Pane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Driver Context Menu</td>
</tr>
<tr>
<td>Network</td>
<td>Network Context Menu</td>
</tr>
<tr>
<td>Device</td>
<td>Device Context Menu</td>
</tr>
<tr>
<td>Signal or Poll List Node</td>
<td>Signal Nodes Context Menus</td>
</tr>
</tbody>
</table>
3 Adding Items

The general rule for adding objects is to click on an object in either the Tree View pane or the List pane, and select the 'Add' option if one is available.

The list of items that can be added is as follows:

- Network
- Device
- Signal
- Poll List
- Alarm Condition

3.1 Networks

The Add Network General dialog enables the user to add a new Network object.

3.1.1 Network Name

The name of the Allen-Bradley Network. The name is arbitrary, but must be unique for each Allen-Bradley Network.

3.1.2 Driver

The name of the parent driver (in this case the Allen-Bradley RDI).

3.1.3 Network Description

An arbitrary string used to describe the network in more detail.
3.1.4 Disable Network

Used to enable or disable the ABRDI network. Off by default (enabled).

3.1.5 Statics Frequency

Specifies the frequency at which the ABRDI updates the RTRDB with statistics.

3.1.6 RSLinx Driver Name

This field identifies the RSLINX driver, which should be configured to run as part of the OpenEnterprise session.

3.1.7 AB Network ID

Arbitrary number between one and fifteen. It represents the AB network interface ID.

3.2 Devices

The Add Device General dialog enables the user to add a new Device.

3.2.1 Device Name

Arbitrary, unique name for the device.

3.2.2 Network

The name of the parent network.
3.2.3 Device Description
An arbitrary string used to describe the device in greater detail.

3.2.4 Address
Identifies the AB RSLINX Port ID and station number. This PLC is also known as the 'A' PLC.

3.2.5 Disable Device
Used to enable or disable the ABRDI device. Off by default (enabled).

3.2.6 Device Check Period
Optional sanity check between the OpenEnterprise Database and ABRDI. If set, the OE Database will request a device sanity check for the device if the device has not been heard from as specified by the CheckPeriod time.

3.2.7 Redundant
Set to TRUE if this is a redundant PLC. Otherwise set to FALSE.

3.2.8 Backup Address
Identifies the back-up AB RSLINX Port ID and station number. Used for redundant systems only. Same format as deviceaddress. This PLC is also known as the 'B' PLC.

3.2.9 Main Indicator
The address within the PLC used to indicate if the PLC is Master or Standby. Only used for redundant systems. e.g. 'N31:0/0'

3.2.10 Schedule Interval
The default time interval for polling data from this device.

3.2.11 Schedule ID
The ID of the default time schedule for polling data from this device (this alternative way of specifying a schedule interval reflects the way these intervals are managed in the OE Database).

3.2.12 Heartbeat Address
The address within the PLC used by the ABRDI to send heartbeats (e.g. update with value 1) to act as a RDI to PLC heartbeat.

3.2.13 Heartbeat Rate
The rate at which the ABRDI will update the Heartbeat value. Specified in seconds.

3.3 Signals
There are four signal types which can be added. Click on the appropriate signal type to go to it's dialog:-
1. Digital Signals
2. Real Signals
3. Integer Signals
4. Complex Signals

3.3.1 Add Digital Signal General Dialog

The Add Digital Signal dialog enables the user to add a new Allen-Bradley Signal to the OpenEnterprise database. If the dialog is displayed from a Device node or object, then it is displayed as a tab on the Add Signal dialog, but if it is displayed from a Signal Node or a Signal object, it will be displayed as a single tab.

3.3.1.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

3.3.1.2 Description

An arbitrary string used to describe the object in greater detail.
3.3.1.3 On Units Text
A string displayed when the signal is on.

3.3.1.4 Off Units Text
A string displayed when the signal is off.

3.3.1.5 Device
The name of the parent device. This is added automatically.

3.3.1.6 File Address
The PLC address. The format varies slightly between signal types. Must be entered by the user.

Digital
An Allen-Bradley digital signal maps to a single 'bit' of data in the PLC. For instance, an example File address for a digital signal is 'B3:0/0'.

Real
An Allen-Bradley real signal maps to a single word (F or N) in the PLC. Examples of File addresses for a real signal are 'F100:0' and 'N101:0'.

Integer
An Allen-Bradley integer signal maps to a single word of integer (N) data in the PLC. An example of File address for an integer signal is 'N101:0'.

Complex
An Allen-Bradley complex signal maps to a single word of integer (N) data in the PLC. An example of File address for a complex signal is 'T101:0'.

3.3.1.7 Display
The filename of the display associated with this signal.

3.3.1.8 Plant Area
The plantarea associated with this signal. A drop-down list is available.

3.3.1.9 Access Area
The accessarea associated with this signal. A drop-down list is available.

3.3.1.10 Callout Area
The calloutarea associated with this signal.
3.3.2 Add Real Signal General Dialog

The Add Real Signal dialog enables the user to add a new Allen-Bradley Signal to the OpenEnterprise database. If the dialog is displayed from a Device node or object, then it is displayed as a tab on the Add Signal dialog, but if it is displayed from a Signal Node or a Signal object, it will be displayed as a single tab.

3.3.2.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

3.3.2.2 Description

An arbitrary string used to describe the object in greater detail.

3.3.2.3 Device

The name of the parent device. This is added automatically.

3.3.2.4 File Address

The PLC address. The format varies slightly between signal types. Must be entered by the user.
Digital

An Allen-Bradley digital signal maps to a single 'bit' of data in the PLC. For instance, an example File address for a digital signal is 'B3:0/0'.

Real

An Allen-Bradley real signal maps to a single word (F or N) in the PLC. Examples of File addresses for a real signal are 'F100:0' and 'N101:0'.

Integer

An Allen-Bradley integer signal maps to a single word of integer (N) data in the PLC. An example of File address for an integer signal is 'N101:0'.

Complex

An Allen-Bradley complex signal maps to a single word of integer (N) data in the PLC. An example of File address for a complex signal is 'T101:0'.

3.3.2.5 Display

The filename of the display associated with this signal.

3.3.2.6 Units Text

A string describing the units used for the value.

3.3.2.7 Low Entry Limit

Low entry limit applied to signal value updates.

3.3.2.8 High Entry Limit

High entry limit applied to signal value updates.

3.3.2.9 Span

The 'm' in y = mx + c. Where 'y' is the database value and 'x' is the PLC value. Used to adjust an integer value to a float.

3.3.2.10 Zero

The 'c' in y = mx + c. Where 'y' is the database value and 'x' is the PLC value. Used to adjust an integer to a float.

3.3.2.11 Plant Area

The plantarea associated with this signal. A drop-down list is available.

3.3.2.12 Access Area

The accessarea associated with this signal. A drop-down list is available.

3.3.2.13 Callout Area

The calloutarea associated with this signal.
3.3.3 Add Integer Signal General Dialog

The Add Integer Signal dialog enables the user to add a new Allen-Bradley Signal to the OpenEnterprise database. If the dialog is displayed from a Device node or object, then it is displayed as a tab on the Add Signal dialog, but if it is displayed from a Signal Node or a Signal object, it will be displayed as a single tab.

3.3.3.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

3.3.3.2 Description

An arbitrary string used to describe the object in greater detail.

3.3.3.3 Units Text

A string describing the units used for the value.

3.3.3.4 Device

The name of the parent device. This is added automatically.
3.3.3.5 **File Address**

The PLC address. The format varies slightly between signal types. Must be entered by the user.

Digital

An Allen-Bradley digital signal maps to a single 'bit' of data in the PLC. For instance, an example File address for a digital signal is 'B3:0/0'.

Real

An Allen-Bradley real signal maps to a single word (F or N) in the PLC. Examples of File addresses for a real signal are 'F100:0' and 'N101:0'.

Integer

An Allen-Bradley integer signal maps to a single word of integer (N) data in the PLC. An example of File address for an integer signal is 'N101:0'.

Complex

An Allen-Bradley complex signal maps to a single word of integer (N) data in the PLC. An example of File address for a complex signal is 'T101:0'.

3.3.3.6 **Display**

The filename of the display associated with this signal.

3.3.3.7 **Low Entry Limit**

Low entry limit applied to signal value updates.

3.3.3.8 **High Entry Limit**

High entry limit applied to signal value updates.

3.3.3.9 **Plant Area**

The plantarea associated with this signal. A drop-down list is available.

3.3.3.10 **Access Area**

The accessarea associated with this signal. A drop-down list is available.

3.3.3.11 **Callout Area**

The calloutarea associated with this signal.

3.3.4 **Add Complex Signal General Dialog**

The *Add Complex Signal* dialog enables the user to add a new Allen-Bradley Signal to the OpenEnterprise database. If the dialog is displayed from a Device node or object, then it is displayed as a tab on the *Add Signal* dialog, but if it is displayed from a Signal Node or a Signal object, it will be displayed as a single tab.
3.3.4.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

3.3.4.2 Description

An arbitrary string used to describe the object in greater detail.

3.3.4.3 Device

The name of the parent device. This is added automatically.

3.3.4.4 File Address

The PLC address. The format varies slightly between signal types. Must be entered by the user.

3.3.4.4.1 Digital

An Allen-Bradley digital signal maps to a single 'bit' of data in the PLC. For instance, an example File address for a digital signal is 'B3:0/0'.

Remote Automation Solutions
Website: www.EmersonProcess.com/Remote
3.3.4.4.2 Real

An Allen-Bradley real signal maps to a single word (F or N) in the PLC. Examples of File addresses for a real signal are 'F100:0' and 'N101:0'.

3.3.4.4.3 Integer

An Allen-Bradley integer signal maps to a single word of integer (N) data in the PLC. An example of File address for an integer signal is 'N101:0'.

3.3.4.4.4 Complex

An Allen-Bradley complex signal maps to a single word of integer (N) data in the PLC. An example of File address for a complex signal is 'T101:0'.

3.3.4.5 Display

The filename of the display associated with this signal.

3.3.4.6 Plant Area

The plantarea associated with this signal. A drop-down list is available.

3.3.4.7 Access Area

The accessarea associated with this signal. A drop-down list is available.

3.3.4.8 Callout Area

The calloutarea associated with this signal.

3.4 Poll Lists

The Add Poll List dialog enables the user to add a new Allen-Bradley Poll List to the OpenEnterprise database. The dialog can be displayed from the context menu of a Device node or Poll List object.
3.4.1 Name

Arbitrary, unique name for the poll list.

3.4.2 Description

An arbitrary string used to describe the poll list in greater detail.

3.4.3 File

The PLC File. E.g. 'B3' or 'N100'.

3.4.4 Start Address

The first address in the address range to be polled by this poll list.

3.4.5 End Address

The last address in the address range to be polled by this poll list. If a poll list is created with a valid start address but no end address, then the OE Database will attempt to auto-configure the end address based on the configured signals in the OE Database.

3.4.6 Auto End Address

If set to TRUE then the value of the EndAddress will be automatically set to reflect the highest address of any configured signals. If set to FALSE then the setting of the EndAddress will be the responsibility of the system configurer.

3.4.7 Access Area

The access area associated with this poll list.
3.4.8 Schedule ID

References the DVI_Schedule entry that controls the frequency at which this data is polled from the PLC.

3.4.9 Disable Poll List

Used to enable or disable the poll list.

3.5 Alarm Conditions

An alarm condition can only be added once the Signal to which it applies exists. To add an alarm condition to a signal, select the signal from the List view and click on the 'Properties' option, as shown in the example below.

<table>
<thead>
<tr>
<th>Name</th>
<th>File address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB1:E3.1</td>
<td></td>
</tr>
<tr>
<td>AB1:E3_1</td>
<td></td>
</tr>
</tbody>
</table>

Then select the 'Alarm Conditions' tab:

![Alarm Conditions dialog](image)

There are three types of Signals which can be configured to have Alarm Conditions:

- Digital
- RealAnalog
- Integer

3.5.1 Digital Alarm Conditions Dialog

The [Set] button in the dialog below is enabled, but there is no check next to the alarm condition, indicating that the new alarm condition has not yet added to the OE database.
3.5.1.1 Alarm Condition Tick List

This list displays the alarm conditions available for the signal type. A check next to an alarm condition indicates that the alarm condition is already configured or will be added for the selected signal when the [Set] button is clicked.

3.5.1.2 Set Button

This button only becomes enabled when the user has filled in the necessary information on the dialog, which varies according to which type of signal and alarm condition is selected. When this button is enabled and clicked the selected alarm condition will added to the OE database and the alarm condition will be checked on the dialog to indicate this.

3.5.1.3 Condition Details

This section is populated with the condition details. This includes the alarm priority for the condition and various other values, depending on the signal type.

3.5.2 Real Alarm Conditions Dialog

The [Set] button is disabled in the example dialog below, indicating that the selected alarm condition has already been configured.
3.5.2.1 Alarm Condition Tick List

This list displays the alarm conditions available for the signal type. A check next to an alarm condition indicates that the alarm condition is already configured or will be added for the selected signal when the [Set] button is clicked.

3.5.2.2 Set Button

This button only becomes enabled when the user has filled in the necessary information on the dialog, which varies according to which type of signal and alarm condition is selected. When this button is enabled and clicked the selected alarm condition will added to the OE database and the alarm condition will be checked on the dialog to indicate this.

3.5.2.3 Condition Details

This section is populated with the condition details. This includes the alarm priority for the condition and various other values, depending on the signal type.

3.5.3 Integer Alarm Conditions Dialog

The [Set] button in the dialog below is enabled, but there is no check next to the alarm condition, indicating that the new alarm condition has not yet added to the OE database.
3.5.3.1 Alarm Condition Tick List

This list displays the alarm conditions available for the signal type. A check next to an alarm condition indicates that the alarm condition is already configured or will be added for the selected signal when the [Set] button is clicked.

3.5.3.2 Set Button

This button only becomes enabled when the user has filled in the necessary information on the dialog, which varies according to which type of signal and alarm condition is selected. When this button is enabled and clicked the selected alarm condition will added to the OE database and the alarm condition will be checked on the dialog to indicate this.

3.5.3.3 Condition Details

This section is populated with the condition details. This includes the alarm priority for the condition and various other values, depending on the signal type.
4 Modifying Items

The general rule for modifying objects is to select the object from either the Tree or List pane, then right click and select the *Properties* option. This will display the *Property* page for the object, which can then be modified.

The objects that can be modified in this way are:

- Driver
- Network
- Device
- Signal
- Alarm Condition
- Poll List

4.1 Driver General Dialog

The *Driver General Page* enables the user to modify settings for the Allen-Bradley RDI driver.

4.1.1 Driver Name

The name of the Driver. It is disabled when in modify mode, and cannot be changed.
4.1.2 Type
The driver type.

4.1.3 Driver Description
An arbitrary string used to describe the driver.

4.1.4 Driver Address
The TCP/IP service name used; offered by the ABRDI.

4.1.5 Driver Disable
Used to enable or disable the ABRDI interface. Off by default (enabled).

4.1.6 Retry Period
The time allocated between connection retries.

4.1.7 Signal Name Separator
The character used with signal names to break the name into base, extension attribute.

4.1.8 Default PLC Timeout
Default timeout value used when communicating with AB PLCs.

4.1.9 PLC Fail Count
The number of consecutive I/O failures to a PLC that will result in the PLC being marked as offline.

4.1.10 Unmapped Datum Delay
The amount of time after abrdi start-up until all devices are checked for having registered signals that are not being collected by any poll lists.

4.1.11 Maximum Data Items
Maximum number of data items. Range 1 to 500.

4.2 Network General Dialog
The Network General Page enables the user to modify settings for Allen-Bradley Network objects.
4.2.1 Network Name

The name of the Allen-Bradley Network. The name is arbitrary, but must be unique for each Allen-Bradley Network.

4.2.2 Driver

The name of the parent driver (in this case the Allen-Bradley RDI).

4.2.3 Network Description

An arbitrary string used to describe the network in more detail.

4.2.4 Disable Network

Used to enable or disable the ABRDI network. Off by default (enabled).

4.2.5 Statics Frequency

Specifies the frequency at which the ABRDI updates the RTRDB with statistics.

4.2.6 RSLinx Driver Name

This field identifies the RSLINX driver, which should be configured to run as part of the OpenEnterprise session.

4.2.7 AB Network ID

Arbitrary number between one and fifteen. It represents the AB network interface ID.

4.3 Device General Dialog

The Device General Page enables the user to modify settings for Allen-Bradley Devices.
4.3.1 **Device Name**
Arbitrary, unique name for the device.

4.3.2 **Network**
The name of the parent network.

4.3.3 **Device Description**
An arbitrary string used to describe the device in greater detail.

4.3.4 **Address**
Identifies the AB RSLINX Port ID and station number. This PLC is also known as the 'A' PLC.

4.3.5 **Redundant**
Set to TRUE if this is a redundant PLC. Otherwise set to FALSE.

4.3.6 **Disable Device**
Used to enable or disable the ABRDI device. Off by default (enabled).
4.3.7 Device Check Period

Optional sanity check between the OpenEnterprise Database and ABRDI. If set, the OE Database will request a device sanity check for the device if the device has not been heard from as specified by the CheckPeriod time.

4.3.8 Schedule ID

The ID of the default time schedule for polling data from this device (this alternative way of specifying a schedule interval reflects the way these intervals are managed in the OE Database).

4.3.9 Heartbeat Address

The address within the PLC used by the ABRDI to send heartbeats (e.g. update with value 1) to act as a RDI to PLC heartbeat.

4.3.10 Heartbeat Rate

The rate at which the ABRDI will update the Heartbeat value. Specified in seconds.

4.4 Signal Dialogs

The Signal Property pages can be accessed from the context menu on Signal nodes in the Tree pane, or from individual Signals in the List pane. The Signal Property pages available are:

- Digital
- RealAnalog
- Integer
- Complex

4.4.1 Digital Signal General Dialog

The Digital Signal General Page enables the user to modify settings for an Allen-Bradley Digital Signal.
4.4.1.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

4.4.1.2 Description

An arbitrary string used to describe the object in greater detail.

4.4.1.3 On Units Text

A string displayed when the signal is on.

4.4.1.4 Off Units Text

A string displayed when the signal is off.

4.4.1.5 Device

The name of the parent device. This is added automatically.

4.4.1.6 File Address

The PLC address. The format varies slightly between signal types. Must be entered by the user.

4.4.1.6.1 Digital

An Allen-Bradley digital signal maps to a single 'bit' of data in the PLC. For instance, an example File address for a digital signal is 'B3:0/0'.
4.4.1.6.2 Real

An Allen-Bradley real signal maps to a single word (F or N) in the PLC. Examples of File addresses for a real signal are 'F100:0' and 'N101:0'.

4.4.1.6.3 Integer

An Allen-Bradley integer signal maps to a single word of integer (N) data in the PLC. An example of File address for an integer signal is 'N101:0'.

4.4.1.6.4 Complex

An Allen-Bradley complex signal maps to a single word of integer (N) data in the PLC. An example of File address for a complex signal is 'T101:0'.

4.4.1.7 Display

The filename of the display associated with this signal.

4.4.1.8 Plant Area

The plantarea associated with this signal. A drop-down list is available.

4.4.1.9 Access Area

The accessarea associated with this signal. A drop-down list is available.

4.4.1.10 Callout Area

The calloutarea associated with this signal.

4.4.2 Real Signal General Dialog

The Real Analog Signal General Page enables the user to modify settings for an Allen-Bradley Digital Signal.
Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

Description

An arbitrary string used to describe the object in greater detail.

Device

The name of the parent device. This is added automatically.

Units Text

A string describing the units used for the value.

Display

The filename of the display associated with this signal.
4.4.2.6 Low Entry Limit
Low entry limit applied to signal value updates.

4.4.2.7 High Entry Limit
High entry limit applied to signal value updates.

4.4.2.8 Span
The 'm' in y = mx + c. Where 'y' is the database value and 'x' is the PLC value. Used to adjust an integer value to a float.

4.4.2.9 Zero
The 'c' in y = mx + c. Where 'y' is the database value and 'x' is the PLC value. Used to adjust an integer to a float.

4.4.2.10 Plant Area
The plantarea associated with this signal. A drop-down list is available.

4.4.2.11 Access Area
The accessarea associated with this signal. A drop-down list is available.

4.4.2.12 Callout Area
The calloutarea associated with this signal.

4.4.3 Integer Signal General Dialog
The Integer Signal General Page enables the user to modify settings for an Allen-Bradley Digital Signal.
4.4.3.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

4.4.3.2 Description

An arbitrary string used to describe the object in greater detail.

4.4.3.3 Device

The name of the parent device. This is added automatically.

4.4.3.4 Units Text

A string describing the units used for the value.

4.4.3.5 Display

The filename of the display associated with this signal.

4.4.3.6 Low Entry Limit

Low entry limit applied to signal value updates.
4.4.3.7 High Entry Limit

High entry limit applied to signal value updates.

4.4.3.8 Span

The 'm' in \(y = mx + c \). Where 'y' is the database value and 'x' is the PLC value. Used to adjust an integer value to a float.

4.4.3.9 Zero

The 'c' in \(y = mx + c \). Where 'y' is the database value and 'x' is the PLC value. Used to adjust an integer to a float.

4.4.3.10 Plant Area

The plantarea associated with this signal. A drop-down list is available.

4.4.3.11 Access Area

The accessarea associated with this signal. A drop-down list is available.

4.4.3.12 Callout Area

The calloutarea associated with this signal.

4.4.4 Complex Signal General Dialog

The Complex Signal General Page enables the user to modify settings for an Allen-Bradley Digital Signal.
4.4.4.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

4.4.4.2 Description

An arbitrary string used to describe the object in greater detail.

4.4.4.3 Device

The name of the parent device. This is added automatically.

4.4.4.4 File Address

The PLC address. The format varies slightly between signal types. Must be entered by the user.

4.4.4.4.1 Digital

An Allen-Bradley digital signal maps to a single 'bit' of data in the PLC. For instance, an example File address for a digital signal is 'B3:0/0'.

4.4.4.4.2 Real

An Allen-Bradley real signal maps to a single word (F or N) in the PLC. Examples of File addresses for a real signal are 'F100:0' and 'N101:0'.
4.4.4.3 Integer

An Allen-Bradley integer signal maps to a single word of integer (N) data in the PLC. An example of File address for an integer signal is 'N101:0'.

4.4.4.4 Complex

An Allen-Bradley complex signal maps to a single word of integer (N) data in the PLC. An example of File address for a complex signal is 'T101:0'.

4.4.4.5 Display

The filename of the display associated with this signal.

4.4.4.6 Plant Area

The plantarea associated with this signal. A drop-down list is available.

4.4.4.7 Access Area

The accessarea associated with this signal. A drop-down list is available.

4.4.4.8 Callout Area

The calloutarea associated with this signal.

4.5 Signal Alarm Conditions

Alarm Conditions can only be modified on a per signal basis. The individual signal must be selected from the List pane, and then the Properties item selected from the context menu. Then on the Signal Properties dialog, select the Alarm Condition tab. The Alarm Conditions that can be configured are:

- Digital Alarm Condition
- RealAnalog Alarm Condition
- Integer Alarm Condition

4.5.1 Digital Alarm Conditions

The [Set] button in the dialog below is enabled, but there is no check next to the alarm condition, indicating that the new alarm condition has not yet added to the OE database.
4.5.1.1 Alarm Condition Tick List

This list displays the alarm conditions available for the signal type. A check next to an alarm condition indicates that the alarm condition is already configured or will be added for the selected signal when the [Set] button is clicked.

4.5.1.2 Set Button

This button only becomes enabled when the user has filled in the necessary information on the dialog, which varies according to which type of signal and alarm condition is selected. When this button is enabled and clicked the selected alarm condition will added to the OE database and the alarm condition will be checked on the dialog to indicate this.

4.5.1.3 Condition Details

This section is populated with the condition details. This includes the alarm priority for the condition and various other values, depending on the signal type.

4.5.2 Real Alarm Conditions

The [Set] button is disabled in the example dialog below, indicating that the selected alarm condition has already been configured.
4.5.2.1 Alarm Condition Tick List

This list displays the alarm conditions available for the signal type. A check next to an alarm condition indicates that the alarm condition is already configured or will be added for the selected signal when the [Set] button is clicked.

4.5.2.2 Set Button

This button only becomes enabled when the user has filled in the necessary information on the dialog, which varies according to which type of signal and alarm condition is selected. When this button is enabled and clicked the selected alarm condition will added to the OE database and the alarm condition will be checked on the dialog to indicate this.

4.5.2.3 Condition Details

This section is populated with the condition details. This includes the alarm priority for the condition and various other values, depending on the signal type.

4.5.3 Integer Alarm Conditions Dialog

The [Set] button in the dialog below is enabled, but there is no check next to the alarm condition, indicating that the new alarm condition has not yet added to the OE database.
4.5.3.1 Alarm Condition Tick List

This list displays the alarm conditions available for the signal type. A check next to an alarm condition indicates that the alarm condition is already configured or will be added for the selected signal when the [Set] button is clicked.

4.5.3.2 Set Button

This button only becomes enabled when the user has filled in the necessary information on the dialog, which varies according to which type of signal and alarm condition is selected. When this button is enabled and clicked the selected alarm condition will added to the OE database and the alarm condition will be checked on the dialog to indicate this.

4.5.3.3 Condition Details

This section is populated with the condition details. This includes the alarm priority for the condition and various other values, depending on the signal type.

4.6 Poll List

The Poll List General Page enables the user to modify settings for an Allen-Bradley Poll List.
4.6.1 Name

Arbitrary, unique name for the object. Must be entered by the user. When modifying, this attribute is disabled because it is a primary key.

4.6.2 Description

An arbitrary string used to describe the object in greater detail.

4.6.3 Device

The name of the parent device. This is added automatically.

4.6.4 File

The PLC File. E.g. 'B3' or 'N100'.

4.6.5 Start Address

The first address in the address range to be polled by this poll list.

4.6.6 End Address

The last address in the address range to be polled by this poll list. If a poll list is created with a valid start address but no end address, then the OE Database will attempt to auto-configure the end address based on the configured signals in the OE Database.
4.6.7 Auto End Address

If set to TRUE then the value of the EndAddress will be automatically set to reflect the highest address of any configured signals. If set to FALSE then the setting of the EndAddress will be the responsibility of the system configurer.

4.6.8 Access Area

The accessarea associated with this signal. A drop-down list is available.

4.6.9 Schedule ID

The ID of the default time schedule for polling data from this device (this alternative way of specifying a schedule interval reflects the way these intervals are managed in the OE Database).

4.6.10 Disable Poll List

Used to enable or disable the poll list.
5 Deleting Objects General Rules

To delete an object right click on it and select the 'Delete' option.

The selected object will be deleted without warning. If the deletion fails, a message will be provided indicating the failure.

The most likely reason will be that the object was a parent to other objects, and that a deletion would compromise database integrity.
6 PLC Addressing

The following uses some examples to demonstrate how to address Allen Bradley PLCs.

6.1.1.1.1 ABNetwork

An ABNetwork entry corresponds to an RSLinx Driver. The mapping is set-up using the ABNetwork.RSLinxDriverName attribute. The following example shows how a configurationured ABNetwork object should be named in order to correspond to the RSLinx Ethernet Driver.

ATTRIBUTE: RSLinxDriverName

VALUE: 'AB_ETH-1'

![Image of RSLinx Ethernet Driver configuration]

6.1.1.1.2 ABDevice

An ABDevice entry corresponds to an Allen Bradley PLC. The PLC can be standalone or redundant. The mapping is set-up between the ABDevice.DeviceAddress and the appropriate RSLinx Driver Station Mapping. The following example shows how an ABDevice entry maps to the configurationured RSLinx Station 1 (Hostname 101.100.0.155).

ATTRIBUTE: DeviceAddress

VALUE: 'AB:LOCAL,1'
6.1.1.1.3 Signals

OE signals are mapped to PLC file addresses. The file addresses mentioned are correct for PLC5s. All addresses specified are in decimal unless otherwise stated. For example, all Input (I) and Output (O) files use octal addressing.

6.1.1.1.4 ABDigital

<table>
<thead>
<tr>
<th>FILE TYPE</th>
<th>FILE ADDRESS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input - I</td>
<td>I:004/00</td>
<td>Input file, Word 4 octal, bit 0 octal</td>
</tr>
<tr>
<td></td>
<td>I:005/17</td>
<td>Input file, Word 5 octal, bit 17 octal</td>
</tr>
<tr>
<td>Output - O</td>
<td>O:004/00</td>
<td>Output file, Word 4 octal, bit 0 octal</td>
</tr>
<tr>
<td></td>
<td>O:005/17</td>
<td>Output file, Word 5 octal, bit 17 octal</td>
</tr>
<tr>
<td>Binary - B</td>
<td>B3:1/0</td>
<td>File 3, Word 1, bit 0</td>
</tr>
<tr>
<td>Integer - N</td>
<td>N7:98/1</td>
<td>File 7, Word 98, bit 1</td>
</tr>
</tbody>
</table>

6.1.1.1.5 ABIntegerAnalog

<table>
<thead>
<tr>
<th>FILE TYPE</th>
<th>FILE ADDRESS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer - N</td>
<td>N50:5</td>
<td>File 50, word 5</td>
</tr>
<tr>
<td>Status - S</td>
<td>S:23</td>
<td>Status file, word 23 (internal time - minutes)</td>
</tr>
</tbody>
</table>
ABRealAnalog

<table>
<thead>
<tr>
<th>FILE TYPE</th>
<th>FILE ADDRESS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float - F</td>
<td>F8:1</td>
<td>File 8, word 1</td>
</tr>
<tr>
<td>Integer - N</td>
<td>N110:25</td>
<td>File 110, word 25</td>
</tr>
</tbody>
</table>

ABPollList

<table>
<thead>
<tr>
<th>FILE TYPE</th>
<th>ADDRESS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input - I</td>
<td>I 4 15</td>
<td>Read Input file, word 4 to word 15 decimal (octal word 17). Note this differs from the octal addressing specified for Input file addresses for signals.</td>
</tr>
<tr>
<td>Output - O</td>
<td>O 4 5</td>
<td>Read Output file, word 4 to word 5. Note that the start and end address must be specified in decimal. This differs from the octal addressing specified for Output file addresses for signals.</td>
</tr>
<tr>
<td>Binary - B</td>
<td>B3 0 2</td>
<td>Read Binary file B3, word 0 to word 2, length 3 words.</td>
</tr>
<tr>
<td>Integer - N</td>
<td>N30 0 10</td>
<td>Read Integer file N30, word 0 to 10, length 11 words.</td>
</tr>
<tr>
<td>Float - F</td>
<td>F8 5 55</td>
<td>Read Float file F8, word 5 to 55, length 51 words.</td>
</tr>
<tr>
<td>Status - S</td>
<td>S 0 23</td>
<td>Read Status file, word 0 to word 23, length 24 words.</td>
</tr>
</tbody>
</table>
7 Index

A
AB Config Tool
 Running ... 1
AB Config Tool .. 1
AB Network ID .. 10, 32
Access Area ... 15, 17, 19, 21, 36, 38, 40, 42, 47
Add Complex Signal General Dialog 20
Add Device .. 5
Add Device General Dialog 10
Add Digital Signal General Dialog 13
Add Integer Signal General Dialog 17
Add Network .. 4
Add Network General Dialog 9
Add Poll List ... 22
Add Real Signal General Dialog 15
Add Signal ... 6
Adding
 Alarm Conditions 23
 Objects General Rules 9
 Signals .. 12
Adding .. 9, 12, 23
Address ... 11, 14, 16, 19, 21, 33, 36, 41
Alarm Condition Tick List 24, 25, 27, 43, 44, 45
Alarm Conditions
 Adding .. 23
 Modifying ... 42
Alarm Conditions ... 23, 42
Auto End Address 23, 47

B
Backup Address ... 12

C
Callout Area ... 15, 17, 19, 21, 36, 38, 40, 42
Complex Signal General Dialog 40
Condition Details 25, 26, 27, 43, 45, 46

D
Default PLC Timeout 31
Delete Device ... 6
Delete Driver ... 4
Delete Network ... 5
Deleting
 Objects General Rules 49
Deleting.. 49
Description 14, 16, 18, 20, 35, 37, 39, 41, 46
Device ... 14, 16, 18, 21, 35, 37, 39, 41, 47
Device Check Period 12, 34
Device Description 11, 33
Device General Dialog 32
Device Name ... 11, 33
Device Node ... 5
Device Node Context Menu 6
Device Properties 6
Digital Alarm Conditions Dialog 24, 43
Digital Signal General Dialog 34
Disable Device ... 11, 34
Disable Network 10, 32
Disable Poll List 23, 47
Display ... 14, 16, 19, 21, 36, 38, 39, 42
Driver ... 10, 32
Driver Address ... 30
Driver Description 30
Driver Disable ... 30
Driver General Dialog 29
Driver Name ... 30
Driver Node ... 4
Driver Node Context Menu 4
Driver Properties 4

E
End Address ... 22, 47

H
Heartbeat Address 12, 34
Heartbeat Rate ... 12, 34
High Entry Limit 17, 19, 38, 40

I
Integer Alarm Conditions Dialog 26, 45
Integer Signal General Dialog 38
Interface .. 3

L
<table>
<thead>
<tr>
<th>M</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Entry Limit</td>
<td>16, 19, 38, 40</td>
</tr>
<tr>
<td>M</td>
<td>12</td>
</tr>
<tr>
<td>Main Indicator</td>
<td></td>
</tr>
<tr>
<td>Maximum Data Items</td>
<td>31</td>
</tr>
<tr>
<td>Modifying</td>
<td></td>
</tr>
<tr>
<td>Alarm Conditions</td>
<td>42</td>
</tr>
<tr>
<td>Objects General Rules</td>
<td>29</td>
</tr>
<tr>
<td>Modifying</td>
<td>29, 42</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>13, 15, 18, 20, 35, 37, 39, 41, 46</td>
</tr>
<tr>
<td>Network</td>
<td>11, 33</td>
</tr>
<tr>
<td>Network Description</td>
<td>10, 32</td>
</tr>
<tr>
<td>Network General Dialog</td>
<td>31</td>
</tr>
<tr>
<td>Network Name</td>
<td>9, 32</td>
</tr>
<tr>
<td>Network Node</td>
<td>5</td>
</tr>
<tr>
<td>Network Node Context Menu</td>
<td>5</td>
</tr>
<tr>
<td>Network Properties</td>
<td>5</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Objects General Rules</td>
<td></td>
</tr>
<tr>
<td>Adding</td>
<td>9</td>
</tr>
<tr>
<td>Deleting</td>
<td>49</td>
</tr>
<tr>
<td>Modifying</td>
<td>29</td>
</tr>
<tr>
<td>Objects General Rules</td>
<td>9, 29, 49</td>
</tr>
<tr>
<td>Off Units Text</td>
<td>14, 35</td>
</tr>
<tr>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Pane</td>
<td>7</td>
</tr>
<tr>
<td>Plant Area</td>
<td>14, 17, 19, 21, 36, 38, 40, 42</td>
</tr>
<tr>
<td>PLC Addressing</td>
<td>51</td>
</tr>
<tr>
<td>PLC Fail Count</td>
<td>31</td>
</tr>
<tr>
<td>Poll List Access Area</td>
<td>23</td>
</tr>
<tr>
<td>Poll List Description</td>
<td>22</td>
</tr>
<tr>
<td>Poll List General Dialog</td>
<td>46</td>
</tr>
<tr>
<td>Poll List Name</td>
<td>22</td>
</tr>
<tr>
<td>Poll List Schedule ID</td>
<td>23</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Real Alarm Conditions Dialog</td>
<td>25, 44</td>
</tr>
<tr>
<td>Real Signal General Dialog</td>
<td>36</td>
</tr>
<tr>
<td>Redundant</td>
<td>12, 33</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Schedule ID</td>
<td>12, 34, 47</td>
</tr>
<tr>
<td>Schedule Interval</td>
<td>12</td>
</tr>
<tr>
<td>Set Button</td>
<td>24, 26, 27, 43, 44, 46</td>
</tr>
<tr>
<td>Signal Dialogs</td>
<td>34</td>
</tr>
<tr>
<td>Signal Name Separator</td>
<td>31</td>
</tr>
<tr>
<td>Signal Nodes</td>
<td>6</td>
</tr>
<tr>
<td>Signals</td>
<td></td>
</tr>
<tr>
<td>Adding</td>
<td>12</td>
</tr>
<tr>
<td>Deleting</td>
<td>12</td>
</tr>
<tr>
<td>Span</td>
<td>17, 38, 40</td>
</tr>
<tr>
<td>Start Address</td>
<td>22, 47</td>
</tr>
<tr>
<td>Statics Frequency</td>
<td>10, 32</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Tree Pane</td>
<td>3</td>
</tr>
<tr>
<td>Type</td>
<td>30</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Units Text</td>
<td>14, 16, 18, 35, 37, 39</td>
</tr>
<tr>
<td>Unmapped Datum Delay</td>
<td>31</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>17, 38, 40</td>
</tr>
</tbody>
</table>
NOTICE

Remote Automation Solutions ("RAS"), division of Emerson Process Management shall not be liable for technical or editorial errors in this manual or omissions from this manual. RAS MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THIS MANUAL AND, IN NO EVENT SHALL RAS BE LIABLE FOR ANY INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PRODUCTION, LOSS OF PROFITS, LOSS OF REVENUE OR USE AND COSTS INCURRED INCLUDING WITHOUT LIMITATION FOR CAPITAL, FUEL AND POWER, AND CLAIMS OF THIRD PARTIES.

Bristol, Inc., Bristol Babcock Ltd, Bristol Canada, BBI SA de CV and the Flow Computer Division are wholly owned subsidiaries of Emerson Electric Co. doing business as Remote Automation Solutions ("RAS"), a division of Emerson Process Management. ROC, FloBoss, ROC LINK, Bristol, Bristol Babcock, ControlWave, TeleFlow and Helicord are trademarks of RAS. AMS, PlantWeb and the PlantWeb logo are marks of Emerson Electric Co. The Emerson logo is a trademark and service mark of the Emerson Electric Co. All other trademarks are property of their respective owners.

The contents of this publication are presented for informational purposes only. While every effort has been made to ensure informational accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. RAS reserves the right to modify or improve the designs or specifications of such products at any time without notice. All sales are governed by RAS’ terms and conditions which are available upon request.

RAS does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any RAS product remains solely with the purchaser and end-user.

Engineered and supported by:

Remote Automation Solutions,
Bristol Babcock Ltd. Blackpole Road, Worcester, WR3 8YB, UK
Reg office: 2nd Floor, Accurist House, 44 Baker Street, London, W1U 7AL
Registered in England and Wales, Reg No. 2580226
VAT Reg No. GB 880 9839 67